Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.216
Filtrar
1.
Carbohydr Res ; 538: 109100, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38555657

RESUMO

A recombinant exo-α-mannosidase from Solitalea canadensis (Sc3Man) has been characterized to exhibit strict specificity for hydrolyzing α1,3-mannosidic linkages located at the non-reducing end of glycans containing α-mannose. Enzymatic characterization revealed that Sc3Man operates optimally at a pH of 5.0 and at a temperature of 37 °C. The enzymatic activity was notably enhanced twofold in the presence of Ca2+ ions, emphasizing its potential dependency on this metal ion, while Cu2+ and Zn2+ ions notably impaired enzyme function. Sc3Man was able to efficiently cleave the terminal α1,3 mannose residue from various high-mannose N-glycan structures and from the model glycoprotein RNase B. This work not only expands the categorical scope of bacterial α-mannosidases, but also offers new insight into the glycan metabolism of S. canadensis, highlighting the enzyme's utility for glycan analysis and potential biotechnological applications.


Assuntos
Bacteroidetes , Manose , Polissacarídeos , alfa-Manosidase/química , alfa-Manosidase/metabolismo , Manose/química , Polissacarídeos/química , Íons , Manosidases/metabolismo
2.
J Enzyme Inhib Med Chem ; 39(1): 2289007, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38086763

RESUMO

We developed new iminosugar-based glycosidase inhibitors against SARS-CoV-2. Known drugs (miglustat, migalastat, miglitol, and swainsonine) were chosen as lead compounds to develop three classes of glycosidase inhibitors (α-glucosidase, α-galactosidase, and mannosidase). Molecular modelling of the lead compounds, synthesis of the compounds with the highest docking scores, enzyme inhibition tests, and in vitro antiviral assays afforded rationally designed inhibitors. Two highly active α-glucosidase inhibitors were discovered, where one of them is the most potent iminosugar-based anti-SARS-CoV-2 agent to date (EC90 = 1.94 µM in A549-ACE2 cells against Omicron BA.1 strain). However, galactosidase inhibitors did not exhibit antiviral activity, whereas mannosidase inhibitors were both active and cytotoxic. As our iminosugar-based drug candidates act by a host-directed mechanism, they should be more resilient to drug resistance. Moreover, this strategy could be extended to identify potential drug candidates for other viral infections.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Modelos Moleculares , Manosidases , Antivirais/farmacologia , Simulação de Acoplamento Molecular
3.
Chemphyschem ; 24(24): e202300628, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-37782219

RESUMO

The catalytic mechanism of a C a + 2 ${C{a}^{+2}}$ -dependent family 92 α ${{\rm \alpha }}$ -mannosidase, which is abundantly present in human gut flora and malfunctions leading to the lysosomal storage disease α-mannosidosis, has been investigated using quantum mechanics/molecular mechanics and metadynamics methods. Computational efforts show that the enzyme follows a conformational itinerary of and the C a + 2 ${C{a}^{+2}}$ ion serves a dual purpose, as it not only distorts the sugar ring but also plays a crucial role in orchestrating the arrangement of catalytic residues. This orchestration, in turn, contributes to the facilitation of O S 2 ${{{\rm \ }}^{{\rm O}}{{\rm S}}_{2}}$ conformers for the ensuing reaction. This mechanistic insight is well-aligned with the experimental predictions of the catalytic pathway, and the computed energies are of the same order of magnitude as the experimental estimations. Hence, our results extend the mechanistic understanding of glycosidases.


Assuntos
Manosidases , Simulação de Dinâmica Molecular , alfa-Manosidose , Catálise , Manosidases/química , Conformação Molecular , Microbioma Gastrointestinal/fisiologia , alfa-Manosidose/metabolismo , alfa-Manosidose/microbiologia , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo
4.
Biochem Biophys Res Commun ; 672: 17-26, 2023 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-37331167

RESUMO

Core α-1,3 mannose is structurally near the core xylose and core fucose on core pentasaccharide from plant and insect glycoproteins. Mannosidase is a useful tool for characterization the role of core α-1,3 mannose in the composition of glycan related epitope, especially for those epitopes in which core xylose and core fucose are involved. Through functional genomic analysis, we identified a glycoprotein α-1,3 mannosidase and named it MA3. We used MA3 to treat allergen horseradish peroxidase (HRP) and phospholipase A2 (PLA2) separately. The results showed that after MA3 removed α-1,3 mannose on HRP, the reactivity of HRP with anti-core xylose polyclonal antibody almost disappeared. And the reactivity of MA3-treated PLA2 with anti-core fucose polyclonal antibody decreased partially. In addition, when PLA2 was conducted enzyme digestion by MA3, the reactivity between PLA2 and allergic patients' sera diminished. These results demonstrated that α-1,3 mannose was an critical component of glycan related epitope.


Assuntos
Infecções por Flavobacteriaceae , Hipersensibilidade , Humanos , Manosidases , Fucose , Xilose , Manose , Glicoproteínas , Polissacarídeos , Epitopos
5.
Glycobiology ; 33(9): 687-699, 2023 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-37202179

RESUMO

While glycans underlie many biological processes, such as protein folding, cell adhesion, and cell-cell recognition, deep evolution of glycosylation machinery remains an understudied topic. N-linked glycosylation is a conserved process in which mannosidases are key trimming enzymes. One of them is the glycoprotein endo-α-1,2-mannosidase which participates in the initial trimming of mannose moieties from an N-linked glycan inside the cis-Golgi. It is unique as the only endo-acting mannosidase found in this organelle. Relatively little is known about its origins and evolutionary history; so far it was reported to occur only in vertebrates. In this work, a taxon-rich bioinformatic survey to unravel the evolutionary history of this enzyme, including all major eukaryotic clades and a wide representation of animals, is presented. The endomannosidase was found to be more widely distributed in animals and other eukaryotes. The protein motif changes in context of the canonical animal enzyme were tracked. Additionally, the data show the two canonical vertebrate endomannosidase genes, MANEA and MANEAL, arose at the second round of the two vertebrate genome duplications and one more vertebrate paralog, CMANEAL, is uncovered. Finally, a framework where N-glycosylation co-evolved with complex multicellularity is described. A better understanding of the evolution of core glycosylation pathways is pivotal to understanding biology of eukaryotes in general, and the Golgi apparatus in particular. This systematic analysis of the endomannosidase evolution is one step toward this goal.


Assuntos
Manosidases , Polissacarídeos , Animais , alfa-Manosidase/genética , alfa-Manosidase/metabolismo , Filogenia , Manosidases/genética , Manosidases/metabolismo , Polissacarídeos/metabolismo , Glicosilação , Vertebrados/metabolismo , Eucariotos/metabolismo , Complexo de Golgi/metabolismo
6.
Acta Crystallogr D Struct Biol ; 79(Pt 5): 387-400, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37071393

RESUMO

Many secreted eukaryotic proteins are N-glycosylated with oligosaccharides composed of a high-mannose N-glycan core and, in the specific case of yeast cell-wall proteins, an extended α-1,6-mannan backbone carrying a number of α-1,2- and α-1,3-mannose substituents of varying lengths. α-Mannosidases from CAZy family GH92 release terminal mannose residues from these N-glycans, providing access for the α-endomannanases, which then degrade the α-mannan backbone. Most characterized GH92 α-mannosidases consist of a single catalytic domain, while a few have extra domains including putative carbohydrate-binding modules (CBMs). To date, neither the function nor the structure of a multi-domain GH92 α-mannosidase CBM has been characterized. Here, the biochemical investigation and crystal structure of the full-length five-domain GH92 α-1,2-mannosidase from Neobacillus novalis (NnGH92) with mannoimidazole bound in the active site and an additional mannoimidazole bound to the N-terminal CBM32 are reported. The structure of the catalytic domain is very similar to that reported for the GH92 α-mannosidase Bt3990 from Bacteroides thetaiotaomicron, with the substrate-binding site being highly conserved. The function of the CBM32s and other NnGH92 domains was investigated by their sequential deletion and suggested that whilst their binding to the catalytic domain was crucial for the overall structural integrity of the enzyme, they appear to have little impact on the binding affinity to the yeast α-mannan substrate. These new findings provide a better understanding of how to select and optimize other multi-domain bacterial GH92 α-mannosidases for the degradation of yeast α-mannan or mannose-rich glycans.


Assuntos
Mananas , Manosidases , Manosidases/química , Manosidases/metabolismo , alfa-Manosidase/metabolismo , Mananas/química , Mananas/metabolismo , Manose/química , Manose/metabolismo , Saccharomyces cerevisiae/metabolismo , Modelos Moleculares , Polissacarídeos/química , Especificidade por Substrato
7.
J Integr Plant Biol ; 65(7): 1670-1686, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36965189

RESUMO

The heavy metal cadmium (Cd) is detrimental to crop growth and threatens human health through the food chain. To cope with Cd toxicity, plants employ multiple strategies to decrease Cd uptake and its root-to-shoot translocation. However, genes that participate in the Cd-induced transcriptional regulatory network, including those encoding transcription factors, remain largely unidentified. In this study, we demonstrate that ENDO-BETA-MANNASE 7 (MAN7) is necessary for the response of Arabidopsis thaliana to toxic Cd levels. We show that MAN7 is responsible for mannase activity and modulates mannose content in the cell wall, which plays a role in Cd compartmentalization in the cell wall under Cd toxicity conditions. Additionally, the repression of root growth by Cd was partially reversed via exogenous application of mannose, suggesting that MAN7-mediated cell wall Cd redistribution depends on the mannose pathway. Notably, we identified a basic leucine zipper (bZIP) transcription factor, bZIP44, that acts upstream of MAN7 in response to Cd toxicity. Transient dual-luciferase assays indicated that bZIP44 directly binds to the MAN7 promoter region and activates its transcription. Loss of bZIP44 function was associated with greater sensitivity to Cd treatment and higher accumulation of the heavy metal in roots and shoots. Moreover, MAN7 overexpression relieved the inhibition of root elongation seen in the bzip44 mutant under Cd toxicity conditions. This study thus reveals a pathway showing that MAN7-associated Cd tolerance in Arabidopsis is controlled by bZIP44 upon Cd exposure.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Cádmio , Manosidases , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Cádmio/toxicidade , Cádmio/metabolismo , Parede Celular/metabolismo , Regulação da Expressão Gênica de Plantas , Manose , Manosidases/genética , Manosidases/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo
8.
J Vet Med Sci ; 85(2): 244-251, 2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36596563

RESUMO

Locoweeds, a type of poisonous weedare, are widely distributed throughout the world and have a significant impact on the development of herbivore animal husbandry. Swainsonine (SW), the main toxin in locoweeds, can competitively inhibit lysosomes α-mannosidase (LAM) in animal cells, resulting in α-mannosidosis. However, the specifics of the interaction between SW and LAM are still unclear. Here, we used molecular docking to predicte the interaction points between SW and LAM, built mutated lysosomes α-mannosidase (LAMM), and analyzed its biochemical properties changes in presumption points. The Trp at the 28th position and the Tyr at the 599th position of the LAM were interaction point candidates, and the above two amino acids in Capra hircus LAM (chLAM), were successfully mutated to glycine by constructing recombinant yeast GS115/PIC9K- LAMM. The results showed that the sensitivity of Capra hircus LAMM (chLAMM), to SW decreased significantly compared with wild-type LAM, the enzyme activity of LAM decreased approximately threefold, the optimum temperature of LAMM decreased from 55°C to 50°C, the optimum pH value increased from 4.5 to 5.0, and the effects of Mn2+, Fe3+, Al3+, Co2+, Cr3+, and ethylenediaminetetraacetic acid (EDTA) on LAM enzyme activity before and after point mutation changed significantly. These findings help us better understanding the molecular mechanism of the interaction mechanism between SW and chLAM, and provide new reference for solving locoweeds poisoning.


Assuntos
Lisossomos , Swainsonina , Animais , alfa-Manosidase/genética , Simulação de Acoplamento Molecular , Lisossomos/metabolismo , Cabras/metabolismo , Manosidases/metabolismo
9.
Biochem Biophys Res Commun ; 645: 61-70, 2023 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-36680938

RESUMO

Esophageal squamous cell carcinoma (ESCC) is a common malignancy with high morbidity and mortality. Although circular RNAs (circRNAs) play important roles in various cancers including ESCC, the role of the circRNA mannosidase alpha class 1A member 2 (circMAN1A2) in ESCC has been rarely studied. This study aimed to explore the role of circMAN1A2 in ESCC. CircMAN1A2 expression in ESCC tissues and cells was evaluated, and the relationship between circMAN1A2 expression and prognosis in patients with ESCC was analyzed. C-C chemokine ligand 5 (CCL5) was found to be a downstream target of circMAN1A2 by analysing the Agilent Microarray. Next, we performed in vitro and in vivo xenotransplantation assays to explore the role of circMAN1A2 in ESCC. We observed that high circMAN1A2 expression is associated with poor prognosis in patients with ESCC. Suppression of circMAN1A2 expression inhibits the proliferation, migration, and invasiveness of ESCC via regulating CCL5. Our results suggest that circMAN1A2 can promote the progression of ESCC by regulating CCL5. Thus, circMAN1A2 might be a novel diagnostic biomarker of ESCC, and targeting circMAN1A2 using inhibitors could be a potential therapeutic strategy to treat ESCC.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , MicroRNAs , Humanos , Carcinoma de Células Escamosas do Esôfago/patologia , RNA Circular/genética , RNA Circular/metabolismo , Neoplasias Esofágicas/patologia , Ligantes , Manosidases/metabolismo , Proliferação de Células/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética
10.
Anticancer Drugs ; 34(1): 44-56, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36066401

RESUMO

Papillary thyroid carcinoma (PTC) is a common malignancy in endocrine system globally. Accumulating articles have found that circular RNAs (circRNAs) were dysregulated, and they were involved in PTC development. The aim of this project was to explore the function and associated mechanism of circRNA mannosidase alpha class 1A member 2 (circMAN1A2) in PTC progression. The expression of RNA was determined by real-time quantitative PCR. Cell proliferation ability was analyzed by colony formation assay and 5-ethynyl-2'-deoxyuridine assay. Cell migration and invasion were assessed by wound healing assay and transwell invasion assay, respectively. Protein levels were determined by Western blot assay. Dual-luciferase reporter assay and RNA immunoprecipitation assay were applied to confirm the interaction between microRNA-449a (miR-449a) and circMAN1A2 or metadherin (MTDH). Xenograft tumor model was utilized to explore the effect of circMAN1A2 silencing on tumor growth in vivo . CircMAN1A2 expression was elevated in PTC specimens and three PTC cell lines relative to adjacent normal specimens and Nthy-ori 3-1 cell line. CircMAN1A2 silencing inhibited the proliferation and motility of PTC cells. CircMAN1A2 acted as a molecular sponge of miR-449a, and circMAN1A2 knockdown suppressed PTC development partly through upregulating miR-449a. MiR-449a bound to the 3' untranslated region of MTDH, and miR-449a restrained PTC progression partly through down-regulating MTDH. CircMAN1A2 interference suppressed PTC progression in vivo . CircMAN1A2 contributed to the proliferation ability and motility of PTC cells through enhancing MTDH expression via sponging miR-449a.


Assuntos
MicroRNAs , Neoplasias da Glândula Tireoide , Humanos , Câncer Papilífero da Tireoide/metabolismo , RNA Circular/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias da Glândula Tireoide/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Movimento Celular/genética , Regiões 3' não Traduzidas , Manosidases/genética , Manosidases/metabolismo , Regulação Neoplásica da Expressão Gênica , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
11.
Nat Chem Biol ; 19(2): 218-229, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36443572

RESUMO

Bifidobacteria are early colonizers of the human gut and play central roles in human health and metabolism. To thrive in this competitive niche, these bacteria evolved the capacity to use complex carbohydrates, including mammalian N-glycans. Herein, we elucidated pivotal biochemical steps involved in high-mannose N-glycan utilization by Bifidobacterium longum. After N-glycan release by an endo-ß-N-acetylglucosaminidase, the mannosyl arms are trimmed by the cooperative action of three functionally distinct glycoside hydrolase 38 (GH38) α-mannosidases and a specific GH125 α-1,6-mannosidase. High-resolution cryo-electron microscopy structures revealed that bifidobacterial GH38 α-mannosidases form homotetramers, with the N-terminal jelly roll domain contributing to substrate selectivity. Additionally, an α-glucosidase enables the processing of monoglucosylated N-glycans. Notably, the main degradation product, mannose, is isomerized into fructose before phosphorylation, an unconventional metabolic route connecting it to the bifid shunt pathway. These findings shed light on key molecular mechanisms used by bifidobacteria to use high-mannose N-glycans, a perennial carbon and energy source in the intestinal lumen.


Assuntos
Bifidobacterium longum , Manose , Animais , Humanos , Manose/metabolismo , Bifidobacterium longum/metabolismo , Microscopia Crioeletrônica , Polissacarídeos/química , Manosidases/metabolismo , Glicosídeo Hidrolases/química , Bifidobacterium/metabolismo , Mamíferos
12.
Appl Biochem Biotechnol ; 195(3): 1823-1836, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36399304

RESUMO

This study focused on the bio-characterization of a GH38 α-mannosidase from the hyperthermophile Pseudothermotoga thermarum DSM 5069. We aimed to successfully express and characterize this thermophilic α-mannosidase and to assess its functional properties. Subsequently, recombinant α-mannosidase PtαMan was expressed in Escherichia coli BL21(DE3) and purified via affinity chromatography, and native protein was verified as a tetramer by size exclusion chromatography. In addition, the activity of α-mannosidase PtαMan was relatively stable at pH 5.0-6.5 and temperatures up to 75 ℃. α-Mannosidase PtαMan was active toward Co2+ and had a good catalytic efficiency deduced from the kinetic parameters. However, its activity was strongly inhibited by Cu2+, Zn2+, SDS, and swainsonine. In summary, this cobalt-required α-mannosidase is putatively involved in the direct modification of glycoproteins.


Assuntos
Bactérias , Manosidases , alfa-Manosidase/genética , alfa-Manosidase/química , Bactérias/metabolismo , Cinética , Manosidases/metabolismo
13.
J Med Genet ; 60(7): 627-635, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36357165

RESUMO

BACKGROUND: Enzymes of the Golgi implicated in N-glycan processing are critical for brain development, and defects in many are defined as congenital disorders of glycosylation (CDG). Involvement of the Golgi mannosidase, MAN2A2 has not been identified previously as causing glycosylation defects. METHODS: Exome sequencing of affected individuals was performed with Sanger sequencing of the MAN2A2 transcript to confirm the variant. N-glycans were analysed in patient-derived lymphoblasts to determine the functional effects of the variant. A cell-based complementation assay was designed to assess the pathogenicity of identified variants using MAN2A1/MAN2A2 double knock out HEK293 cell lines. RESULTS: We identified a multiplex consanguineous family with a homozygous truncating variant p.Val1101Ter in MAN2A2. Lymphoblasts from two affected brothers carrying the same truncating variant showed decreases in complex N-glycans and accumulation of hybrid N-glycans. On testing of this variant in the developed complementation assay, we see the complete lack of complex N-glycans. CONCLUSION: Our findings show that pathogenic variants in MAN2A2 cause a novel autosomal recessive CDG with neurological involvement and facial dysmorphism. Here, we also present the development of a cell-based complementation assay to assess the pathogenicity of MAN2A2 variants, which can also be extended to MAN2A1 variants for future diagnosis.


Assuntos
Defeitos Congênitos da Glicosilação , Masculino , Humanos , Glicosilação , Células HEK293 , Homozigoto , Defeitos Congênitos da Glicosilação/genética , Defeitos Congênitos da Glicosilação/metabolismo , Polissacarídeos/metabolismo , Manosidases/metabolismo
14.
Org Biomol Chem ; 20(45): 8932-8943, 2022 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-36322142

RESUMO

The development of effective inhibitors of Golgi α-mannosidase II (GMII, E.C.3.2.1.114) with minimal off-target effects on phylogenetically-related lysosomal α-mannosidase (LMan, E.C.3.2.1.24) is a complex task due to the complicated structural and chemical properties of their active sites. The pKa values (and also protonation forms in some cases) of several ionizable amino acids, such as Asp, Glu, His or Arg of enzymes, can be changed upon the binding of the inhibitor. Moreover, GMII and LMan work under different pH conditions. The pKa calculations on large enzyme-inhibitor complexes and FMO-PIEDA energy decomposition analysis were performed on the structures of selected inhibitors obtained from docking and hybrid QM/MM calculations. Based on the calculations, the roles of the amino group incorporated in the ring of the imino-D-lyxitol inhibitors and some ionizable amino acids of Golgi-type (Asp270-Asp340-Asp341 of Drosophila melanogaster α-mannosidase dGMII) and lysosomal-type enzymes (His209-Asp267-Asp268 of Canavalia ensiformis α-mannosidase, JBMan) were explained in connection with the observed inhibitory properties. The pyrrolidine ring of the imino-D-lyxitols prefers at the active site of dGMII the neutral form while in JBMan the protonated form, whereas that of imino-L-lyxitols prefers the protonation form in both enzymes. The calculations indicate that the binding mechanism of inhibitors to the active-site of α-mannosidases is dependent on the inhibitor structure and could be used to design new selective inhibitors of GMII. A series of novel synthetic N-substituted imino-D-lyxitols were evaluated with four enzymes from the glycoside hydrolase GH38 family (two of Golgi-type, Drosophila melanogaster GMIIb and Caenorhabditis elegans AMAN-2, and two of lysosomal-type, Drosophila melanogaster LManII and Canavalia ensiformis JBMan, enzymes). The most potent structures [N-9-amidinononyl and N-2-(1-naphthyl)ethyl derivatives] inhibited GMIIb (Ki = 40 nM) and AMAN-2 (Ki = 150 nM) with a weak selectivity index (SI) toward Golgi-type enzymes of IC50(LManII)/IC50(GMIIb) = 35 or IC50(JBMan)/IC50(AMAN-2) = 86. On the other hand, weaker micromolar inhibitors, such as N-2-naphthylmethyl or 4-iodobenzyl derivatives [IC50(GMIIb) = 2.4 µM and IC50 (AMAN-2) = 7.6 µM], showed a significant SI in the range from 111 to 812.


Assuntos
Drosophila melanogaster , Manosidases , Animais , alfa-Manosidase/química , Drosophila melanogaster/metabolismo , Manosidases/química , Manosidases/metabolismo , Inibidores Enzimáticos/química , Aminoácidos , Amantadina
15.
Cell Rep ; 41(8): 111679, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36417860

RESUMO

N-glycans are processed mainly in the Golgi, and a well-organized Golgi structure is required for accurate glycosylation. However, during mitosis the Golgi undergoes severe fragmentation. The resulting trafficking block leads to an extended exposure of cargo molecules to Golgi enzymes. It is unclear how cells avoid glycosylation defects during mitosis. In this study, we report that Golgi α-1,2-mannosidase IA (MAN1A1), the first enzyme that cargo proteins encounter once arriving the Golgi, is phosphorylated at serine 12 by CDK1 in mitosis, which attenuates its activity, affects the production of glycan isomers, and reduces its interaction with the subsequent glycosyltransferase, MGAT1. Expression of wild-type MAN1A1, but not its phosphomimetic mutant, rescues the glycosylation defects in mannosidase I-deficient cells, whereas expression of its phosphorylation-deficient mutant in mitosis increases the formation of complex glycans. Our study reveals that glycosylation is regulated by cytosolic signaling during the cell cycle.


Assuntos
Complexo de Golgi , Manosidases , Fosforilação , Manosidases/metabolismo , Complexo de Golgi/metabolismo , Mitose , Polissacarídeos/metabolismo
16.
Pest Manag Sci ; 78(12): 5071-5079, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36053804

RESUMO

BACKGROUND: In addition to its role in the digestive system, the peritrophic membrane (PM) provides a physical barrier protecting the intestine from abrasion and against pathogens. Because of its sensitivity to RNA interference (RNAi), the notorious pest insect, the Colorado potato beetle (CPB, Leptinotarsa decemlineata), has become a model insect for functional studies. Previously, RNAi-mediated silencing of Mannosidase-Ia (ManIa), a key enzyme in the transition from high-mannose glycan moieties to paucimannose N-glycans, was shown to disrupt the transition from larva to pupa and the metamorphosis into adult beetles. While these effects at the organismal level were interesting in a pest control context, the effects at the organ or tissue level and also immune effects have not been investigated yet. To fill this knowledge gap, we performed an analysis of the midgut and PM in ManIa-silenced insects. RESULTS: As marked phenotype, the ManIaRNAi insects, the PM pore size was found to be decreased when compared to the control GFPRNAi insects. These smaller pores are related to the observation of thinner microvilli (Mv) on the epithelial cells of the midgut of ManIaRNAi insects. A midgut and PM proteome study and reverse transcription quantitative polymerase chain reaction (RT-qPCR) analysis with a selection of marker genes was performed to characterize the midgut cells and understand their response to the silencing of ManIa. In agreement with the loss of ManIa activity, an accumulation of high-mannose N-glycans was observed in the ManIa-silenced insects. As a pathogen-associated molecular pattern (PAMP), the presence of these glycan structures could trigger the activation of the immune pathways. CONCLUSION: The observed decrease in PM pore size could be a response to prevent potential pathogens to access the midgut epithelium. This hypothesis is supported by the strong increase in transcription levels of the anti-fungal peptide drosomycin-like in ManIaRNAi insects, although further research is required to elucidate this possibility. The potential immune response in the midgut and the smaller pore size in the PM shed a light on the function of the PM as a physical barrier and provide evidence for the relation between the Mv and PM. © 2022 Society of Chemical Industry.


Assuntos
Besouros , Solanum tuberosum , Animais , Interferência de RNA , Solanum tuberosum/metabolismo , Manosidases/genética , Manosidases/metabolismo , Manosidases/farmacologia , Manose/metabolismo , Mania , Sistema Digestório/metabolismo , Larva/genética , Insetos/metabolismo , Polissacarídeos/metabolismo , Polissacarídeos/farmacologia
17.
Carbohydr Res ; 521: 108680, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36156417

RESUMO

High-mannose type glycans play important roles in biosynthesis of glycoproteins including glycoprotein quality control system. In the endoplasmic reticulum (ER), α1,2-mannosidases cleave several mannose (Man) residues to give small high-mannose type glycans, such as glycans containing five or six mannose residues (M5-glycan or M6-glycan). These glycans are reported to act as a signal for degradation processes of glycoproteins in the ER. In this work, we isolated the M5-glycan and the M6-glycan from delipidated egg yolk and confirmed that their structures were identical to human type glycans based on rigorous NMR experiments, suggesting the potential use for semisynthesis of glycoconjugates and glycan analysis.


Assuntos
Gema de Ovo , Manose , Animais , Galinhas/metabolismo , Gema de Ovo/metabolismo , Feminino , Glicoproteínas/química , Humanos , Manose/química , Manosidases/metabolismo , Polissacarídeos/química
18.
Int J Mol Sci ; 23(15)2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35897761

RESUMO

Prostate cancer is the most common cancer in men, and it is primarily driven by androgen steroid hormones. The glycosylation enzyme EDEM3 is controlled by androgen signalling and is important for prostate cancer viability. EDEM3 is a mannosidase that trims mannose from mis-folded glycoproteins, tagging them for degradation through endoplasmic reticulum-associated degradation. Here, we find that EDEM3 is upregulated in prostate cancer, and this is linked to poorer disease-free survival. Depletion of EDEM3 from prostate cancer cells induces an ER stress transcriptomic signature, and EDEM3 overexpression is cyto-protective against ER stressors. EDEM3 expression also positively correlates with genes involved in the unfolded protein response in prostate cancer patients, and its expression can be induced through exposure to radiation. Importantly, the overexpression of EDEM3 promotes radio-resistance in prostate cancer cells and radio-resistance can be reduced through depletion of EDEM3. Our data thus implicate increased levels of EDEM3 with a role in prostate cancer pathology and reveal a new therapeutic opportunity to sensitise prostate tumours to radiotherapy.


Assuntos
Degradação Associada com o Retículo Endoplasmático , Neoplasias da Próstata , Androgênios/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Retículo Endoplasmático/metabolismo , Humanos , Masculino , Manosidases/metabolismo , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , alfa-Manosidase/metabolismo
19.
Chembiochem ; 23(19): e202200266, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-35816406

RESUMO

Cancer-associated alterations to glycosylation have been shown to aid cancer development and progression. An increased abundance of high mannose N-glycans has been observed in several cancers. Here, we describe the preparation of lectin drug conjugates (LDCs) that permit toxin delivery to cancer cells presenting high mannose N-glycans. Additionally, we demonstrate that cancer cells presenting low levels of high mannose N-glycans can be rendered sensitive to the LDCs by co-treatment with a type I mannosidase inhibitor. Our findings establish that an increased abundance of high mannose N-glycans in the glycocalyx of cancer cells can be leveraged to enable toxin delivery.


Assuntos
Lectinas , Manose , Manosidases , Preparações Farmacêuticas , Polissacarídeos
20.
Biochem Biophys Res Commun ; 612: 44-49, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35500441

RESUMO

Oligomannose-type glycans on glycoproteins play an important role in the endoplasmic reticulum (ER)-protein quality control. Mannose trimming of the glycans triggers the ER-associated protein degradation pathway. In mammals, ER mannosyl-oligosaccharide 1,2-α-mannosidase 1 and three ER degradation -enhancing α-mannosidase-like proteins (EDEMs) are responsible for mannose trimming. However, the exact role of EDEMs as α-mannosidases in ERAD remains unclear. Here, we performed the biochemical characterization of EDEM3 using synthetic oligomannose-type glycan substrates. In vitro assays revealed that EDEM3 can convert an asparagine-linked M9 glycan to M8 and M7 glycans in contrast to glycine-linked M9 glycan, and the activity is enhanced in the presence of ERp46, a known partner protein of EDEM3. Our study provides novel insights into the enzymatic properties of EDEM3 and the use of artificial glycan substrates as tools to study ERAD mechanisms.


Assuntos
Asparagina , Manose , Animais , Glicoproteínas/metabolismo , Mamíferos/metabolismo , Manose/metabolismo , Manosidases/metabolismo , Polissacarídeos/metabolismo , alfa-Manosidase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...